Measuring body composition using the bioelectrical impedance method can predict the outcomes of gemcitabine-based chemotherapy in patients with pancreatobiliary tract cancer

Oncol Lett. 2015 Dec;10(6):3535-3541. doi: 10.3892/ol.2015.3811. Epub 2015 Oct 16.

Abstract

In order to examine the effect on body composition of anticancer drug treatments, the body composition rate in patients being treated with gemcitabine (GEM)-based chemotherapy was measured over time on an outpatient basis with a simple body composition monitor using the bioelectrical impedance (BI) method. The results revealed a significant reduction in the body fat rate (P=0.01) over the course of treatment in patients with pancreatobiliary tract cancer who became unable to continue GEM-based chemotherapy due to progressive disease or a decreased performance status. Meanwhile, no changes were observed in the body composition of control patients with urothelial carcinoma receiving GEM-based chemotherapy. In association with the adverse reactions to GEM and the hematotoxicity profile, a decreased white blood cell count was more likely to occur in body fat-dominant patients (mean fat rate, 25.8%; mean muscle rate, 26.2%), whereas a decreased blood platelet count was more likely to occur in skeletal muscle-dominant patients (mean fat rate, 23.3%; mean muscle rates, 28.7%). The correlation between body composition parameters and the relative dose intensity (RDI) associated with GEM administration was also analyzed. The results revealed a positive correlation between the RDI and basal metabolism amount (P=0.03); however, the RDI did not correlate with the body fat rate, skeletal muscle rate or body mass index (P=0.61, P=0.14 and P=0.20, respectively). In conclusion, the body composition rate measurement using the BI method over time may be useful for predicting the outcome of GEM-based chemotherapy and adverse events in patients with pancreatobiliary tract cancer. In particular, the present findings indicate that the changes in body fat rate may be helpful as an adjunct index for assessing potential continuation of chemotherapy and changes in physical conditions.

Keywords: bioelectrical impedance method; body composition; chemotherapy; gemcitabine; pancreatobiliary tract cancer.