Preterm delivery (PTD) remains a serious challenge in perinatology. Intrauterine infection and/or inflammation, followed by increased inflammatory cytokines, represented by IL-6, are involved in this pathology. Our aim was to identify IL-6-producing cells in the placenta and to analyze the potential of targeting IκB kinase β (IKKβ) signaling to suppress IL-6 production for the treatment of PTD. Immunohistochemical analyses using placentas complicated with severe chorioamnionitis revealed that IL-6 is mainly expressed in human amniotic mesenchymal stromal cells (hAMSCs). Primary hAMSCs were collected, and strong IL-6 expression was confirmed. In hAMSCs, the treatment of tumor necrosis factor-α or IL-1β drastically induced IL-6 production, followed by the phosphorylation of IKKs. A novel IKKβ inhibitor, IMD-0560, almost completely inhibited IL-6 production from hAMSCs. Using an experimental lipopolysaccharide-induced PTD mouse model, the therapeutic potential of IMD-0560 was examined. IMD-0560 was delivered vaginally 4 hours before lipopolysaccharide administration. Mice in the IMD-0560 (30 mg/kg, twice a day) group had a significantly lower rate of PTD [10 of 22 (45%)] without any apparent adverse events on the mice and their pups. In uteri collected from mice, IMD-0560 inhibited not only IL-6 production but also production of related cytokines, such as keratinocyte-derived protein chemokine/CXCL1, macrophage inflammatory protein-2/CXCL2, and monocyte chemoattractant protein-1/chemokine ligand 2. Targeting IKKβ signaling shows promising effects through the suppression of these cytokines and can be explored as a future option for the prevention of PTD.
Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.