Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish

PLoS One. 2016 Jan 21;11(1):e0146724. doi: 10.1371/journal.pone.0146724. eCollection 2016.

Abstract

Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • California
  • Climate Change*
  • Climate*
  • Ecosystem
  • Endangered Species*
  • Estuaries*
  • Models, Theoretical
  • Osmeriformes / physiology*
  • Seasons
  • Temperature

Grants and funding

Funding to LRB, TM-K, and JTM was provided by the Priority Ecosystem Science Programs of the U.S. Geological Survey, and by a grant from the Delta Stewardship Council through the Delta Science Program. This work represents contribution 69 of the ‘‘CASCaDE: Computational Assessments of Scenarios of Change for the Delta Ecosystem” project. This work was supported by the University of California Agricultural Experiment Station [grant number 2098-H to NAF], the United States Department of Interior, Bureau of Reclamation [contract number R12AP20018 to REC and NAF], the State and Federal Contractors Water Agency [grant number 201301957 to REC] and the California Delta Stewardship Council [contract number 201015533 to REC and NAF]. Partial funding was provided to LMK by the California Sea Grant Delta Science Doctoral Fellowship R/ SF-56 and the National Academies, National Research Council post-doctoral research fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.