Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.