In order to obtain comparable and reproducible results from time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of biological cells, the influence of sample preparation and storage has to be carefully considered. It has been previously shown that the impact of the chosen preparation routine is crucial. In continuation of this work, the impact of storage needs to be addressed, as besides the fact that degradation will unavoidably take place, the effects of different storage procedures in combination with specific sample preparations remain largely unknown. Therefore, this work examines different wet (buffer, water, and alcohol) and dry (air-dried, freeze-dried, and critical-point-dried) storage procedures on human mesenchymal stem cell cultures. All cell samples were analyzed by ToF-SIMS immediately after preparation and after a storage period of 4 weeks. The obtained spectra were compared by principal component analysis with lipid- and amino acid-related signals known from the literature. In all dry storage procedures, notable degradation effects were observed, especially for lipid-, but also for amino acid-signal intensities. This leads to the conclusion that dried samples are to some extent easier to handle, yet the procedure is not the optimal storage solution. Degradation proceeds faster, which is possibly caused by oxidation reactions and cleaving enzymes that might still be active. Just as well, wet stored samples in alcohol struggle with decreased signal intensities from lipids and amino acids after storage. Compared to that, the wet stored samples in a buffered or pure aqueous environment revealed no degradation effects after 4 weeks. However, this storage bears a higher risk of fungi/bacterial contamination, as sterile conditions are typically not maintained. Thus, regular solution change is recommended for optimized storage conditions. Not directly exposing the samples to air, wet storage seems to minimize oxidation effects, and hence, buffer or water storage with regular renewal of the solution is recommended for short storage periods.