Interspecific interactions between wild felids vary across scales and levels of urbanization

Ecol Evol. 2015 Dec 9;5(24):5946-61. doi: 10.1002/ece3.1812. eCollection 2015 Dec.

Abstract

Ongoing global landscape change resulting from urbanization is increasingly linked to changes in species distributions and community interactions. However, relatively little is known about how urbanization influences competitive interactions among mammalian carnivores, particularly related to wild felids. We evaluated interspecific interactions between medium- and large-sized carnivores across a gradient of urbanization and multiple scales. Specifically, we investigated spatial and temporal interactions of bobcats and pumas by evaluating circadian activity patterns, broad-scale seasonal interactions, and fine-scale daily interactions in wildland-urban interface (WUI), exurban residential development, and wildland habitats. Across levels of urbanization, interspecific interactions were evaluated using two-species and single-species occupancy models with data from motion-activated cameras. As predicted, urbanization increased the opportunity for interspecific interactions between wild felids. Although pumas did not exclude bobcats from areas at broad spatial or temporal scales, bobcats responded behaviorally to the presence of pumas at finer scales, but patterns varied across levels of urbanization. In wildland habitat, bobcats avoided using areas for short temporal periods after a puma visited an area. In contrast, bobcats did not appear to avoid areas that pumas recently visited in landscapes influenced by urbanization (exurban development and WUI habitat). In addition, overlap in circadian activity patterns between bobcats and pumas increased in exurban development compared to wildland habitat. Across study areas, bobcats used sites less frequently as the number of puma photographs increased at a site. Overall, bobcats appear to shape their behavior at fine spatial and temporal scales to reduce encounters with pumas, but residential development can potentially alter these strategies and increase interaction opportunities. We explore three hypotheses to explain our results of how urbanization affected interspecific interactions that consider activity patterns, landscape configuration, and animal scent marking. Altered competitive interactions between animals in urbanized landscapes could potentially increase aggressive encounters and the frequency of disease transmission.

Keywords: Bobcat; Lynx rufus; Puma concolor; competition; detection probability; mountain lion; occupancy; residential development; species interactions; urban gradient.