The protistan parasite Perkinsus olseni is a deadly causative agent of perkinsosis, a molluscan disease affecting Manila clam (Ruditapes philippinarum), having a significant impact on world mollusc production. Deciphering the underlying molecular mechanisms in R. philippinarum-P. olseni interaction is crucial for controlling this parasitosis. The present study investigated the transcriptional expression in the parasite trophozoite using RNA-seq. Control and treatment (in vitro challenged with Manila clam-plasma) P. olseni trophozoite RNA were extracted and sequenced on the Illumina HiSeq 2000 instrument using a 100-bp paired-end sequencing strategy. Paired reads (64.7 million) were de novo assembled using Trinity, and the resultant transcripts were further clustered using CAP3. The re-constructed P. olseni transcriptome contains 47,590 unique transcripts of which 23,505 were annotated to 9764 unique proteins. A large number of genes were associated with Gene Ontology terms such as stress and immune-response, cell homeostasis, antioxidation, cell communication, signal transduction, signalling and proteolysis. Among annotated transcripts, a preliminary gene expression analysis detected 679 up-regulated and 478 down-regulated genes, linked to virulence factors, anti-oxidants, adhesion and immune-response molecules. Genes of several metabolic pathways such as DOXP/MEP, FAS II or folate biosynthesis, which are potential therapeutic targets, were identified. This study is the first description of the P. olseni transcriptome, and provides a substantial genomic resource for studying the molecular mechanisms of the host-parasite interaction in perkinsosis. In this sense, it is also the first evaluation of the parasite gene expression after challenge with clam extracellular products.
Keywords: Gene expression; Pathogenicity; Perkinsus olseni; RNA-seq; Response to host-immunity; Transcriptome.
Copyright © 2016 Elsevier Inc. All rights reserved.