Antiproliferative effect of β-escin - an in vitro study

Acta Biochim Pol. 2016;63(1):79-87. doi: 10.18388/abp.2015_1013. Epub 2016 Jan 27.

Abstract

This study examined the antiproliferative effects of β-escin (E) in cancer cells. The study showed that E inhibited cancer cells growth in a dose-dependent manner. The flow cytometric analysis revealed an escin-induced increase in the sub-G1 DNA content, which is considered to be a marker of apoptosis. Apoptosis was also confirmed by annexin V staining and DNA fragmentation assay. These effects were associated with increased generation of reactive oxygen species (ROS), caspase-3 activation and decreased mitochondrial membrane potential (MMP). Moreover, escin decreased mitochondrial protein content and mitochondrial fluorescence intensity as well as caused depletion of glutathione (GSH). However, activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was not significantly changed in escin-treated cells. In conclusion, our results demonstrated that E has apoptotic effects in human cancer cells through the mechanisms involving mitochondrial perturbation. Although the exact mechanism needs to be investigated further, it can be concluded that E may be a useful candidate agent for cancer treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Caspase 3 / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / drug effects*
  • DNA Fragmentation
  • Dose-Response Relationship, Drug
  • Enzyme Activation
  • Escin / pharmacology*
  • Glutathione / metabolism
  • Glutathione Peroxidase / metabolism
  • Glutathione Reductase / metabolism
  • Humans
  • In Vitro Techniques
  • Membrane Potential, Mitochondrial / drug effects
  • Neoplasms / enzymology
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Reactive Oxygen Species / metabolism

Substances

  • Reactive Oxygen Species
  • Escin
  • Glutathione Peroxidase
  • Glutathione Reductase
  • Caspase 3
  • Glutathione