Biologically Active New N, N', N''-Tri-Substituted Ferrocenyl Phenylguanidines and their Characterization

Med Chem. 2016 Sep 27;12(7):684-698. doi: 10.2174/1573406412666160129104817.

Abstract

Background: Introducing new candidates for various biological targets is a prime characteristic of the present day medicinal research and development. Guanidines are the important bioactive compounds and are well recognized for their diverse biological activities, especially as anticancer, antimicrobial and antioxidant agents. Due to the favorable electronic properties of ferrocene like lipophilicity, redox activity, stability in solution state and its easy derivatization, have made ferrocenyl compounds very popular molecules for biological uses.

Objectives: Keeping in sight, it is valuable to synthesize ferrocenyl guanidines to increase the binding potency with DNA, make them redox active and more lipophilic compounds.

Methods: Six new ferrocenyl phenylguanidines (F1 - F6) have been synthesized via multi step protocol. The structures of F1 - F6 were established by using elemental analysis, UV-visible, multinuclear (1H and 13C) NMR and FTIR spectroscopy. Solution phase redox behavior, of the synthesized compounds, has been characterized by cyclic voltammetry. Two compounds (F2 & F4) were characterized by single crystal XRD.

Results: Due to the biological importance of guanidines; these ferrocenyl guanidiens were screened for different biological activities like antibacterial, antifungal, antioxidant and DNA binding. DNA interaction study was done by using UV-visible spectrometry and cyclic voltammetry revealed good binding capacity of the test compounds.

Conclusion: The results revealed that the ferrocene incorporation to guanidines enhances their DNA binding ability. A similar trend was found in antioxidant and antimicrobial studies. Being the bioactive molecules these compounds are potential drug candidates.

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Antifungal Agents / chemical synthesis
  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology*
  • Aspergillus flavus / drug effects
  • Aspergillus fumigatus / drug effects
  • Escherichia coli / drug effects
  • Ferrous Compounds / chemical synthesis
  • Ferrous Compounds / chemistry
  • Ferrous Compounds / pharmacology*
  • Free Radical Scavengers / chemical synthesis
  • Free Radical Scavengers / chemistry
  • Free Radical Scavengers / pharmacology*
  • Fusarium / drug effects
  • Guanidines / chemical synthesis
  • Guanidines / chemistry
  • Guanidines / pharmacology*
  • Klebsiella pneumoniae / drug effects

Substances

  • Anti-Bacterial Agents
  • Antifungal Agents
  • Ferrous Compounds
  • Free Radical Scavengers
  • Guanidines