Introduction: Reliance on out-of-pocket payment for healthcare may lead poor households to undertake catastrophic health expenditure, and risk-pooling mechanisms have been recommended to mitigate such burdens for households in Bangladesh. About 88% of the population of Bangladesh depends on work in the informal sector. We aimed to estimate willingness-to-pay (WTP) for CBHI and identify its determinants among three categories of urban informal workers rickshaw-pullers, shopkeepers and restaurant workers.
Methods: The bidding game version of contingent valuation method was used to estimate weekly WTP. In three urban locations 557 workers were interviewed using a structured questionnaire during 2010 and 2011. Multiple-regression analysis was used to predict WTP by demographic and household characteristics, occupation, education level and past illness.
Results: WTP for a CBHI scheme was expressed by 86.7% of informal workers. Weekly average WTP was 22.8 BDT [Bangladeshi Taka; 95% confidence interval (CI) 20.9-24.8] or 0.32 USD and varied significantly across occupational groups (p = 0.000) and locations (p = 0.003). WTP was highest among rickshaw-pullers (28.2 BDT or 0.40 USD; 95% CI: 24.7-31.7), followed by restaurant workers (20.4 BDT 0.29 USD; 95% CI: 17.0-23.8) and shopkeepers (19.2 BDT or 0.27 USD; 95% CI: 16.1-22.4). Multiple regression analysis identified monthly income, occupation, geographical location and educational level as the key determinants of WTP. WTP increased 0.196% with each 1% increase in monthly income, and was 26.9% lower among workers with up to a primary level of education versus those with higher than primary, but less than one year of education.
Conclusion: Informal workers in urban areas thus are willing to pay for CBHI and socioeconomic differences explain the magnitude of WTP. The policy maker might think introducing community-based model including public-community partnership model for healthcare financing of informal workers. Decision making regarding the implementation of such schemes should consider worker location and occupation.