Tuberculosis (TB) remains a major health problem worldwide. Currently, the Bacilli Calmette-Guérin (BCG) is the only available licensed TB vaccine, which has low efficacy in protection against adult pulmonary TB. Therefore, the development of a safe and effective vaccine against TB needs global attention. In the present study, a novel multi-stage subunit vaccine candidate from culture filtrate protein-10 (CFP-10) and heat shock protein X (HspX) of Mycobacterium tuberculosis fused to the Fc domain of mouse IgG2a as a selective delivery system for antigen-presenting cells (APCs) was produced and its immunogenicity assessed. The optimized gene constructs were introduced into pPICZαA expression vectors, and the resultant plasmids (pPICZαA-CFP-10:Hspx:Fcγ2a and pPICZαA-CFP-10:Hspx:His) were transferred into Pichia pastoris by electroporation. The identification of both purified recombinant fusion proteins was evaluated by SDS-PAGE and immunoblotting. Then the immunogenicity of the recombinant proteins with and without BCG was evaluated in BALB/c mice by assessing the level of IFN-γ, IL-12, IL-4, IL-17 and TGF-β cytokines. Both multi-stage vaccines (CFP-10:HspX:Fcγ2a and CFP-10:HspX:His) induced Th1-type cellular responses by producing high level of IFN-γ (272 pg/mL, p<0.001) and IL-12 (191 pg/mL, p<0.001). However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low level of IL-4 (10 pg/mL) compared to the CFP-10:HspX:His group. The production of IFN-γ to CFP-10:HspX:Fcγ2a was markedly consistent and showed an increasing trend for IL-12 compared with the BCG or CFP-10:HspX:His primed and boosted groups. Findings revealed that CFP-10:Hspx:Fcγ2a fusion protein can elicit strong Th1 antigen-specific immune responses in favor of protective immunity in mice and could provide new insight for introducing an effective multi-stage subunit vaccine against TB.
Keywords: CFP-10; Fc-delivery system; HspX; Multi-stage immunogens; Mycobacterium tuberculosis; Subunit vaccine.
Copyright © 2016 Elsevier B.V. All rights reserved.