Pathogen invasion triggers robust antiviral cytokine production via different transcription factor signaling pathways. We have previously demonstrated that major vault protein (MVP) induces type I IFN production during viral infection; however, little is known about the role of MVP in proinflammatory responses. In this study, we found in vitro that expression of MVP, IL-6, and IL-8 was inducible upon dsRNA stimulation or viral infection. Moreover, MVP was essential for the induction of IL-6 and IL-8, as impaired expression of IL-6 and IL-8 in MVP-deficient human PBMCs, human lung epithelial cells (A549), and THP-1 monocytes, as well as in murine splenocytes, peritoneal macrophages, and PBMCs from MVP-knockout (MVP(-/-)) mice, was observed. Upon investigation of the underlying mechanisms, we demonstrated that MVP acted in synergy with AP-1 (c-Fos) and CCAAT/enhancer binding protein (C/EBP)β-liver-enriched transcriptional activating protein to activate the IL6 and IL8 promoters. Introduction of mutations into the AP-1 and C/EBPβ binding sites on the IL6 and IL8 promoters resulted in the loss of synergistic activation with MVP. Furthermore, we found that MVP interacted with both c-Fos and C/EBPβ. The interactions promoted nuclear translocation and recruitment of these transcription factors to IL6 and IL8 promoter regions. In the MVP(-/-) mouse model, significantly decreased expression of early antiviral cytokines resulted in higher viral titer in the lung, higher mortality, and heavier lung damage after infection with lethal influenza A virus. Taken together, our findings help to delineate a novel role of MVP in host proinflammatory response.
Copyright © 2016 by The American Association of Immunologists, Inc.