Tuberculosis (TB) is a serious disease around the world, and protein based subunit vaccine is supposed to be a kind of promising novel vaccine against it. However, there is no effective adjuvant available in clinic to activate cell-mediated immune responses which is required for TB subunit vaccine. Therefore, it is imperative to develop new adjuvant. Here we reported an adjuvant composed of dimethyl dioctadecylammonium (DDA), Poly I:C and cholesterol (DPC for short). DDA can form a kind of cationic liposome with the ability to deliver and present antigen and can induce Th1 type cell-mediated immune response. Poly I:C, a ligand of TLR3 receptor, could attenuate the pathologic reaction induced by following Mycobacterium tuberculosis challenge. Cholesterol, which could enhance rigidity of lipid bilayer, is added to DDA and Poly I:C to improve the stability of the adjuvant. The particle size and Zeta-potential of DPC were analyzed in vitro. Furthermore, DPC was mixed with a TB fusion protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-Rv2626c (LT70) to construct a subunit vaccine. The subunit vaccine-induced immune responses and protective efficacy against M. tuberculosis H37Rv infection in C57BL/6 mice were investigated. The results showed that the DPC adjuvant with particle size of 400 nm and zeta potential of 40 mV was in good stability. LT70 in the adjuvant of DPC generated strong antigen-specific humoral and cell-mediated immunity, and induced long-term higher protective efficacy against M. tuberculosis infection (5.41 ± 0.38log10CFU) than traditional vaccine Bacillus Calmette-Guerin (BCG) (6.01 ± 0.33log10CFU) and PBS control (6.53 ± 0.26log10CFU) at 30 weeks post-vaccination. In conclusion, DPC would be a promising vaccine adjuvant with the ability to stimulate Th1 type cell-mediated immunity, and could be used in TB subunit vaccine.
Keywords: Cationic liposomes; Cholesterol; DDA; Mycobacterium tuberculosis; Poly I:C; Vaccine adjuvant.
Copyright © 2016 Elsevier Ltd. All rights reserved.