Objectives: To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA).
Methods: We evaluated 272 patients who underwent CCTA with 3(rd) generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis.
Results: Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥ .0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p < .0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥ .0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤ .0414). Correlation analysis showed a moderate association between tube voltage and BMI (r = .639).
Conclusion: ATVS allows individual tube voltage adaptation for CCTA performed with 3(rd) generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality.
Key points: • Automated tube voltage selection allows an individual tube voltage adaption in CCTA. • A tube voltage-based reduction of contrast medium volume is feasible. • Image quality was maintained while radiation exposure was significantly decreased. • A moderate association between tube voltage and body mass index was found.
Keywords: Automated tube voltage selection; Body mass index; Coronary CT angiography; Image quality; Radiation dose reduction.