Background information: While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion.
Results: We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism.
Conclusions: These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species.
Significance: To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.
Keywords: Enolase; Extracellular matrix digestion; Hymenoptera; Plasminogen; Teratocytes.
© 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.