A Glycosyltransferase from Nicotiana alata Pollen Mediates Synthesis of a Linear (1,5)-α-L-Arabinan When Expressed in Arabidopsis

Plant Physiol. 2016 Apr;170(4):1962-74. doi: 10.1104/pp.15.02005. Epub 2016 Feb 5.

Abstract

The walls of Nicotiana alata pollen tubes contain a linear arabinan composed of (1,5)-α-linked arabinofuranose residues. Although generally found as a side chain on the backbone of the pectic polysaccharide rhamnogalacturonan I, the arabinan in N. alata pollen tubes is considered free, as there is no detectable rhamnogalacturonan I in these walls. Carbohydrate-specific antibodies detected arabinan epitopes at the tip and along the shank of N. alata pollen tubes that are predominantly part of the primary layer of the bilayered wall. A sequence related to ARABINAN DEFICIENT1 (AtARAD1), a presumed arabinan arabinosyltransferase from Arabidopsis (Arabidopsis thaliana), was identified by searching an N alata pollen transcriptome. Transcripts for this ARAD1-like sequence, which we have named N. alata ARABINAN DEFICIENT-LIKE1 (NaARADL1), accumulate in various tissues, most abundantly in the pollen grain and tube, and encode a protein that is a type II membrane protein with its catalytic carboxyl terminus located in the Golgi lumen. The NaARADL1 protein can form homodimers when transiently expressed in Nicotiana benthamiana leaves and heterodimers when coexpressed with AtARAD1 The expression of NaARADL1 in Arabidopsis led to plants with more arabinan in their walls and that also exuded a guttation fluid rich in arabinan. Chemical and enzymatic characterization of the guttation fluid showed that a soluble, linear α-(1,5)-arabinan was the most abundant polymer present. These results are consistent with NaARADL1 having an arabinan (1,5)-α-arabinosyltransferase activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism*
  • Fluorescence
  • Glycosyltransferases / metabolism*
  • Golgi Apparatus / metabolism
  • Nicotiana / enzymology*
  • Pentosyltransferases / metabolism
  • Phylogeny
  • Plant Proteins / metabolism
  • Plants, Genetically Modified
  • Pollen / enzymology*
  • Pollen Tube / growth & development
  • Pollen Tube / metabolism
  • Polysaccharides / metabolism*
  • Protein Multimerization
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Subcellular Fractions / enzymology

Substances

  • Plant Proteins
  • Polysaccharides
  • araban
  • Glycosyltransferases
  • Pentosyltransferases
  • arabinosyltransferase