Accumulating data has demonstrated that miRNA 106b∼25, which are composed of the highly conserved miRNA 106b, miRNA 93, and miRNA 25, play carcinogenic roles in cancers. We investigated the expression of miRNA 106b∼25 in gastric cancer cells (SGC 7901, MGC 803, BGC 823) and normal gastric epithelial cell then inhibited miRNA 106b∼25 expression via transiently transfecting their antisense inhibitor. After miRNA 106b∼25 cluster was inhibited, MTT, Scratch test, Transwell invasion test, and flow cytometry were applied to investigate the proliferation, invasion, migration, cell cycle, and apoptosis of gastric cancer cell. The expression of miRNA 106b, miRNA 93, and miRNA 25 in gastric cancer cells SGC 7901, MGC 803, and BGC 823 was significantly higher than in gastric epithelial cell GES-1. The most significant suppression of miRNA 106b∼25 expressions can be detected in MGC 803 cell after transiently transfecting their antisense inhibitors. So, MGC 803 cell was selected as our research object. After inhibiting miRNA 106b and miRNA 93 respectively and combined, the proliferation, migration, and invasion of gastric cancer cell MGC 803 were significantly suppressed. The most significant suppression was observed in combined inhibiting group. After miRNA 106b∼25 cluster was inhibited respectively or combined, more gastric cancer cells were arrested in the G0G1 phase. However, there was no statistical difference in comparing with control groups. While the percentages of apoptotic cells increased after miRNA 106b∼25 cluster was inhibited, the statistical difference was detected only in combined inhibiting group. Inhibiting miRNA 106b∼25 cluster via transfecting antisense inhibitor can influence biological behavior of gastric cancer cell.
Keywords: Antisense inhibitors; Biological behavior; Gastric cancer; miRNA 106b; miRNA 25; miRNA 93.