Calcification of soft tissues, such as heart valves and tendons, is a common clinical problem with limited therapeutics. Tissue specific stem/progenitor cells proliferate to repopulate injured tissues. But some of them become divergent to the direction of ossification in the local pathological microenvironment, thereby representing a cellular target for pharmacological approach. We observed that HIF-2alpha (encoded by EPAS1 inclined form) signaling is markedly activated within stem/progenitor cells recruited at calcified sites of diseased human tendons and heart valves. Proinflammatory microenvironment, rather than hypoxia, is correlated with HIF-2alpha activation and promoted osteochondrogenic differentiation of tendon stem/progenitor cells (TSPCs). Abnormal upregulation of HIF-2alpha served as a key switch to direct TSPCs differentiation into osteochondral-lineage rather than teno-lineage. Notably, Scleraxis (Scx), an essential tendon specific transcription factor, was suppressed on constitutive activation of HIF-2alpha and mediated the effect of HIF-2alpha on TSPCs fate decision. Moreover, pharmacological inhibition of HIF-2alpha with digoxin, which is a widely utilized drug, can efficiently inhibit calcification and enhance tenogenesis in vitro and in the Achilles's tendinopathy model. Taken together, these findings reveal the significant role of the tissue stem/progenitor cells fate decision and suggest that pharmacological regulation of HIF-2alpha function is a promising approach for soft tissue calcification treatment.
Keywords: Calcification; Digoxin; HIF-2 alpha; Heart valves; Stem cells; Tendons.
© 2016 AlphaMed Press.