Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation

Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1106-18. doi: 10.1016/j.bbamcr.2016.02.004. Epub 2016 Feb 6.

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery.

Keywords: Acute lung injury; Bacterial pathogenesis; Migration; NF-κB; Proliferation; Wnt.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcysteine / analogs & derivatives
  • Acetylcysteine / pharmacology
  • Bacterial Proteins / genetics
  • Bacterial Proteins / pharmacology*
  • Blotting, Western
  • Cell Communication / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cysteine Proteinase Inhibitors / pharmacology
  • Dose-Response Relationship, Drug
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Integrin beta1 / metabolism
  • Lectins / genetics
  • Lectins / pharmacology*
  • Microscopy, Confocal
  • Proteasome Endopeptidase Complex / metabolism
  • Proteolysis / drug effects
  • Recombinant Proteins / pharmacology
  • Transcription Factor RelA / metabolism
  • Wnt Signaling Pathway / drug effects
  • beta Catenin / metabolism*

Substances

  • Bacterial Proteins
  • Cysteine Proteinase Inhibitors
  • Integrin beta1
  • LecB protein, Pseudomonas aeruginosa
  • Lectins
  • Recombinant Proteins
  • Transcription Factor RelA
  • beta Catenin
  • lactacystin
  • Glycogen Synthase Kinase 3 beta
  • Glycogen Synthase Kinase 3
  • Proteasome Endopeptidase Complex
  • Acetylcysteine