The domestic sheep (Ovis aries) has been an economically and culturally important farm animal species since its domestication around the world. A wide array of sheep breeds with abundant phenotypic diversity exists including domestication and selection as well as the indigenous breeds may harbor specific features as a result of adaptation to their environment. The objective of this study was to investigate the population structure of indigenous sheep in a large geographic location of the Chinese mainland. Six microsatellites were genotyped for 611 individuals from 14 populations. The mean number of alleles (±SD) ranged from 7.00 ± 3.69 in Gangba sheep to 10.50 ± 4.23 in Tibetan sheep. The observed heterozygote frequency (±SD) within a population ranged from 0.58 ± 0.03 in Gangba sheep to 0.71 ± 0.03 in Zazakh sheep and Minxian black fur sheep. In addition, there was a low pairwise difference among the Minxian black fur sheep, Mongolian sheep, Gansu alpine merino, and Lanzhou fat-tailed sheep. Bayesian analysis with the program STRUCTURE showed support for 3 clusters, revealing a vague genetic clustering pattern with geographic location. The results of the current study inferred high genetic diversity within these native sheep in the Chinese mainland.
Keywords: China; Diversity; indigenous sheep; microsatellite.