We use high-resolution neutron Larmor diffraction and capacitative dilatometry to investigate spontaneous and forced magnetostriction in undoped, antiferromagnetic YBa_{2}Cu_{3}O_{6.0}, the parent compound of a prominent family of high-temperature superconductors. Upon cooling below the Néel temperature T_{N}=420 K, Larmor diffraction reveals the formation of magnetostructural domains of characteristic size ∼240 nm. In the antiferromagnetic state, dilatometry reveals a minute (4×10^{-6}) orthorhombic distortion of the crystal lattice in external magnetic fields. We attribute these observations to exchange striction and spin-orbit coupling induced magnetostriction, respectively, and show that they have an important influence on the thermal and charge transport properties of undoped and lightly doped cuprates.