Background and purpose: To analyze the distribution of individually-determined radiation dose to the heart and its functional sub-structures after radiotherapy in breast cancer patients treated in Germany during 1998-2008.
Material and methods: We obtained electronic treatment planning records for 769 female breast cancer patients treated with megavoltage tangential field radiotherapy. All dose distributions were re-calculated using Eclipse with the anisotropic analytical algorithm (AAA) for photon fields, and the electron Monte Carlo algorithm for electron boost fields. Based on individual dose volume histograms for the complete heart and several functional sub-structures, we estimated various dose measures in patient groups.
Results: Mean heart dose spanned a range of 0.9-19.1Gy for left-sided radiotherapy and 0.3-11.6Gy for right-sided radiotherapy. Average (median) mean heart dose was 4.6Gy (3.7Gy) for left-sided radiotherapy, and 1.7Gy (1.4Gy) for right-sided RT. With left-sided radiotherapy, 66% of the patients had 2cm(3) of the complete heart exposed to at least 40Gy. Younger age, higher body mass index, tumor location in a medial quadrant, and presence of a parasternal field were also associated with higher heart dose.
Conclusion: Tumor location and treatment choices influence cardiac dose with complex interactions. There is considerable variability in heart dose, with dose metrics of different cardiac sub-structures showing different patterns in their dependency on external influences. Dose-response analysis of late cardiac effects after radiotherapy requires detailed individual dosimetry.
Keywords: Breast cancer; Dose–volume histogram; Dosimetry; Heart dose.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.