Circulating tumor DNA (ctDNA) is becoming an important biomarker in noninvasive diagnosis and monitoring of tumor dynamics. This study tested the feasibility of plasma ctDNA for the non-invasive analysis of tumor mutations in esophageal squamous cell carcinoma (ESCC) by sequencing of tumor, tumor-adjacent, and normal tissue, as well as pre-surgery and post-surgery plasma. Exome sequencing of eight patients identified between 29 and 134 somatic mutations in ESCCs, many of which were also determined in ctDNA. Comparison of pre-surgery and post-surgery plasma has shown that mutations had reduced frequency or disappeared after surgery treatment. We further evaluated the TruSight Cancer sequencing panel by using it to detect mutations in the plasma of three patients. Tumor mutations were only found in one of them. To design a sequencing panel with improved targeting, we identified significantly mutated genes by meta-analysis of 532 ESCC genomes. Our results confirmed the well-known driver genes and found several uncharacterized genes. The new panel consisted of 90 recurrent genes, which theoretically achieved 94% and 75% of sensitivity when detecting at least 1 and 2 mutant genes in ESCC patients, respectively. Our results demonstrate the feasibility of using ctDNA to detect ESCCs and monitor treatment effect. The low-cost and sensitive target panel could facilitate clinical usage of ctDNA as a noninvasive biomarker.
Keywords: Diagnosis; Esophageal squamous cell carcinoma; Sequencing; ctDNA.
Copyright © 2016 Elsevier Inc. All rights reserved.