The composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented. This phase was characterized by a combination of X-ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha-NAT was found, which explains the experimental spectra and the phase-transition kinetics. On the basis of these results, we propose a new three-step mechanism for NAT formation in high-altitude ice clouds.
Keywords: atmospheric chemistry; diffraction; ice clouds; polar stratospheric clouds; vibrational spectroscopy.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.