Objectives: To determine the added value of amide proton transfer (APT) imaging to conventional and perfusion MRI for differentiating tumour progression (TP) from the treatment-related effect (TE) in patients with post-treatment glioblastomas.
Methods: Sixty-five consecutive patients with enlarging contrast-enhancing lesions following concurrent chemoradiotherapy were assessed using contrast-enhanced T1-weighted MRI (CE-T1WI), 90th percentile histogram parameters of normalized cerebral blood volume (nCBV90) and APT asymmetry value (APT90). Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUC) and cross validations.
Results: There were statistically significant differences in the mean APT90 between the TP and the TE groups (3.87-4.01 % vs. 1.38-1.41 %; P < .001). Compared with CE-T1WI alone, the addition of APT90 to CE-T1WI significantly improved cross-validated AUC from 0.58-0.74 to 0.89-0.91 for differentiating TP from TE. The combination of CE-T1WI, nCBV90 and APT90 resulted in greater diagnostic accuracy for differentiating TP from TE than the combination of CE-T1WI and nCBV90 (cross-validated AUC, 0.95-0.97 vs. 0.84-0.91). The inter-reader agreement between the expert and trainee was excellent for the measurements of APT90 (intraclass correlation coefficient, 0.94).
Conclusion: Adding APT imaging to conventional and perfusion MRI improves the diagnostic performance for differentiating TP from TE.
Key points: • APT imaging could provide a reliable distinction between TP and TE • Adding APT imaging to CE-T1WI improved the diagnostic accuracy versus CE-T1WI alone • Multimodal imaging using CE-T1WI, perfusion and APT imaging led to accurate diagnosis • The inter-reader agreement of APT histogram parameters was excellent.
Keywords: Brain; Chemoradiotherapy; Glioblastoma; Magnetic resonance imaging; Multimodal imaging.