Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

Nanoscale. 2016 Mar 14;8(10):5578-86. doi: 10.1039/c6nr00079g.

Abstract

A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at -20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs with PC71BM as the electron acceptor.

Publication types

  • Research Support, Non-U.S. Gov't