New soluble MoS2 nanosheets covalently functionalized with poly(N-vinylcarbazole) (MoS2-PVK) were in situ synthesized for the first time. In contrast to MoS2 and MoS2 /PVK blends, both the solution of MoS2 -PVK in DMF and MoS2-PVK/poly(methyl methacrylate) (PMMA) film show superior nonlinear optical and optical limiting responses. The MoS2-PVK/PMMA film shows the largest nonlinear coefficients (βeff) of about 917 cm GW(-1) at λ=532 nm (cf. 100.69 cm GW(-1) for MoS2/PMMA and 125.12 cm GW(-1) for MoS2/PVK/PMMA) and about 461 cm GW(-1) at λ=1064 nm (cf. -48.92 cm GW(-1) for MoS2/PMMA and 147.56 cm GW(-1) for MoS2/PVK/PMMA). A larger optical limiting effect, with thresholds of about 0.3 GW cm(-2) at λ=532 nm and about 0.5 GW cm(-2) at λ=1064 nm, was also achieved from the MoS2-PVK/PMMA film. These values are among the highest reported for MoS2-based nonlinear optical materials. These results show that covalent functionalization of MoS2 with polymers is an effective way to improve nonlinear optical responses for efficient optical limiting devices.
Keywords: molybdenum; nanostructures; nonlinear optics; polymers; sulfur.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.