To develop an effective subunit vaccine which could target tubercle bacilli with different metabolic states and provide effective protective immunity, we fused antigens ESAT6, Ag85B, peptide 190-198 of MPT64, and Mtb8.4 mainly expressed by proliferating bacteria and latency-associated antigen Rv2626c together to construct a multistage protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-Rv2626c (LT70 for short) with the molecular weight of 70 kDa. The human T-cell responses to LT70 and other antigens were analyzed. The immune responses of LT70 in the adjuvant of DDA and Poly I:C and its protective efficacy against Mycobacterium tuberculosis (M. tuberculosis) infection in C57BL/6 mice were evaluated. The results showed that LT70 was stably produced in Escherichia coli and could be purified by successive salting-out and chromatography. LT70 could be strongly recognized by human T cells from TB patients and persons who are supposed latently infected with M. tuberculosis. The subunit vaccine LT70 generated strong antigen-specific humoral and cell-mediated immunity, and induced higher protective efficacy (5.41±0.37 Log10 CFU in lung) than traditional vaccine Bacillus Calmette-Guerin (6.01±0.33 Log10 CFU) and PBS control (6.53±0.26 Log10 CFU) at 30 weeks post vaccination (10 weeks post-challenge) against M. tuberculosis infection (p < 0.05). These findings suggested that LT70 would be a promising subunit vaccine candidate against M. tuberculosis infection.
Keywords: LT70; Rv2626c; mycobacterium tuberculosis; protective efficacy; subunit vaccine.