Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

Sci Rep. 2016 Feb 29:6:21495. doi: 10.1038/srep21495.

Abstract

The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5-10 eV and densities around 10(21) cm(-3) are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations.

Publication types

  • Research Support, Non-U.S. Gov't