Purpose: Accurate coil placement over a target area is critical during transcranial magnetic stimulation (TMS), as small deviations can alter testing outcomes. Accordingly, frameless stereotaxic systems (FSS) are recommended for reliable coil placement during TMS applications. However, FSS is not practical due to the cost associated with procuring such systems. Therefore, the purpose of this study was to develop a low-cost TMS coil tracking approach using simple webcams and an image processing algorithm in LabVIEW Vision Assistant.
Methods: A system was created using two webcams, retroreflective markers, and computer stereovision, for tracking the TMS coil over a target area. Accuracy of the system was validated in both the global and local reference frames, while repeatability was measured within- and between-days for placement of the TMS coil over the target area relative to the head. The feasibility of our system was also verified by collecting motor evoked potentials (MEPs) of first dorsal interosseous muscle from human subjects.
Results: The results of this study indicated that the system was highly accurate and repeatable, and could track the coil position with <5 mm error and orientation <1.1° error from the target. We also observed larger and more consistent MEPs when stimulating the brain using feedback from the coil tracking system than when the examiner attempted to stimulate without any feedback.
Conclusion: The findings suggest that webcam-based coil tracking is a feasible low-cost solution to track coil positions during TMS procedures.
Keywords: Neuronavigation; motion tracking; motor mapping; real time; stereotaxy.