Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation

J Biol Chem. 2016 Apr 22;291(17):9025-41. doi: 10.1074/jbc.M116.715474. Epub 2016 Feb 29.

Abstract

The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway.

Keywords: LC3/GABARAP; LIR; UBA5; UFIM; UFM1; isothermal titration calorimetry (ITC); nuclear magnetic resonance (NMR); protein motif; signal transduction; x-ray crystallography.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / chemistry
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Amino Acid Motifs
  • Apoptosis Regulatory Proteins
  • HEK293 Cells
  • Humans
  • Microtubule-Associated Proteins / chemistry
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism*
  • Protein Processing, Post-Translational / physiology*
  • Protein Structure, Secondary
  • Proteins / chemistry
  • Proteins / genetics
  • Proteins / metabolism*
  • Structure-Activity Relationship
  • Ubiquitin-Activating Enzymes / chemistry
  • Ubiquitin-Activating Enzymes / genetics
  • Ubiquitin-Activating Enzymes / metabolism*
  • Ubiquitin-Conjugating Enzymes / chemistry
  • Ubiquitin-Conjugating Enzymes / genetics
  • Ubiquitin-Conjugating Enzymes / metabolism*

Substances

  • Adaptor Proteins, Signal Transducing
  • Apoptosis Regulatory Proteins
  • GABARAP protein, human
  • Microtubule-Associated Proteins
  • Proteins
  • UBA5 protein, human
  • UFC1 protein, human
  • UFM1 protein, human
  • Ubiquitin-Conjugating Enzymes
  • Ubiquitin-Activating Enzymes

Associated data

  • PDB/1EO6
  • PDB/1J0G
  • PDB/1WXS
  • PDB/2ASQ
  • PDB/2K6Q
  • PDB/2KDI
  • PDB/3D32
  • PDB/3UIN
  • PDB/3VTU
  • PDB/5HKH