The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices.
Keywords: Aquatic non-target invertebrates; Bacillus thuringiensis israelensis; Biopesticide; Chironomids; Field biomonitoring; Mosquito control.
Copyright © 2016 Elsevier B.V. All rights reserved.