Life cycle assessment of dairy farms

Rev Environ Health. 2016 Mar;31(1):187-90. doi: 10.1515/reveh-2015-0037.

Abstract

In 2013 the population of dairy cattle in Indonesia had reached 636,000 head with a 4.61% growth rate per year. The inputs were energy, water, and feed. These inputs produced outputs, such as emissions, solid waste and liquid waste. This research compared the maintenance systems in modern farms and local farms. The data were collected from 30 local farmers and one modern farm. This research used the life cycle assessment (LCA) method. LCA is based on ISO 14040. LCA consists of several stages: the goal and scope definition, inventory analysis, impact assessment, and interpretation. This research used the cradle to gate concept and fat corrected milk (FCM) as the function unit. The impacts of these activities could generate global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP). The calculations showed that the systems in local farms had the greatest emissions result over all impacts. In the case of local farms, the GWP was 2.34 kg CO2 eq/L of milk FCM, AP was 0.12 g SO2 eq/L of milk FCM, and EP was 18.28 g PO43- $P{O_{\rm{4}}}^{{\rm{3}} - }$ eq/L milk FCM. While the impact from the modern farm was GWP of 1.52 kg CO2 eq/L of milk FCM, AP of 0.02 g SO2 eq/L of milk FCM, and EP of 0.353 g PO43- $P{O_{\rm{4}}}^{{\rm{3}} - }$ eq/L of milk FCM. Based on the total-weighted result, the GWP had the greatest impact from the overall life cycle phase of milk production. The total-weighted result obtained was of 0.298 EUR/L of FCM from a local farm and 0.189 EUR/L of FCM from the modern farm. This amount could be used to remediate the global warming, acidification, and eutrophication impacts of milk production.

MeSH terms

  • Dairying* / economics
  • Environmental Monitoring*
  • Environmental Pollution / analysis*
  • Eutrophication
  • Global Warming
  • Indonesia