Background: When single-agent androgen deprivation therapy (ADT) is administered for locally advanced prostate cancer, men usually relapse within 1-2 years with more malignant castrate-resistant disease. The reason for this is currently unknown. We now hypothesise that an initial treatment response that increases tumour hypoxia drives selection of more malignant tumours.
Methods: The LNCaP prostate tumour xenografts were analysed for physiological (oxygen and vasculature) and genetic (PCR array) changes during longitudinal treatment with ADT (bicalutamide, 6 or 2 mg kg⁻¹ daily for 28 days).
Results: Bicalutamide caused an immediate (within 24 h) dose-dependent fall in oxygenation in LNCaP-luc prostate tumours with a nadir of ≤ 0.1% oxygen within 3-7 days; this was attributed to a significant loss of tumour microvessels (window chamber study). The hypoxic nadir persisted for 10-14 days. During the next 7 days, tumours regrew, oxygenation improved and the vasculature recovered; this was inhibited by the VEGF inhibitor B20.4.1.1. Gene expression over 28 days showed marked fluctuations consistent with the physiological changes. Accompanying the angiogenic burst (day 21) was a particularly striking increase in expression of genes associated with epithelial-to-mesenchymal transition (EMT). In particular, insulin-like growth factor 1 (IGF-1) showed increases in mRNA and protein expression.
Conclusions: Hypoxic stress caused by ADT promotes EMT, providing a mechanism for the cause of malignant progression in prostate cancer.