In this paper, we demonstrate a high-performance surface-enhanced Raman scattering (SERS) substrate based on high-density ordered Ag@Al2O3 nanobowl arrays. By ion beam etching (IBE) the anodized aluminum oxide (AAO) and subsequent Ag coating, ordered Ag@Al2O3 nanobowl arrays were created on the Si substrate. Unlike the 'hot spots' generated between adjacent metallic nanostructures, the Ag@Al2O3 nanobowl introduced 'hot spots' on the metal boundary of its hemispherical cavity. Based on the analysis of SERS signals, the optimized SERS substrate of Ag@Al2O3 nanobowl arrays had both high sensitivity and large-area uniformity. A detection limit as low as 10(-10) M was obtained using chemisorbed p-thiocresol (p-Tc) molecules, and the SERS signal was highly reproducible with a small standard deviation. The method opens up a new way to create highly sensitive SERS sensors with high-density 'hot spots', and it could play an important role in device design and corresponding biological and food safety monitoring applications.