The subdivision of tissues into sharply demarcated regions with distinct and homogenous identity is an essential aspect of embryonic development. Along the anteroposterior axis of the vertebrate nervous system, this involves signaling which induces spatially restricted expression of transcription factors that specify regional identity. The spatial expression of such transcription factors is initially imprecise, with overlapping expression of genes that specify distinct identities, and a ragged border at the interface of adjacent regions. This pattern becomes sharpened by establishment of mutually exclusive expression of transcription factors, and by cell segregation that underlies formation of a straight border. In this review, we discuss studies of the vertebrate hindbrain which have revealed how discrete regional identity is established, the roles of Eph-ephrin signaling in cell segregation and border sharpening, and how cell identity and cell segregation are coupled.
Keywords: Boundary formation; Cell segregation; Eph receptors; Ephrins; Hindbrain; Hox genes.
© 2016 Elsevier Inc. All rights reserved.