The recently proposed three-atom-thick single-layer ZnSe sheet demonstrates a strong quantum confinement effect by exhibiting a large enhancement of band gap relative to the zinc blende (ZB) bulk phase. In this work, we aim at investigating the electronic and optical properties of this ultrathin tetragonal ZnSe single-layer sheet with various chalcogen dopant atoms, based on density functional theory (DFT). We find that these single-layer sheets with dopant atoms are still direct-band semiconductors with tunable band gaps, which can lead to strong light absorption and potential applications in solar energy harvesting. Theoretical optical absorbance results show that the S-doped ZnSe monolayer exhibits a higher absorption performance compared to other doped and undoped ZnSe monolayers. These findings pave a way for the modulation of novel ultrathin tetragonal ZnSe monolayers for a wealth of potential optoelectronic applications.
Keywords: density functional theory; dopants; monolayers; optical absorption; two-dimensional materials.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.