Phosphorus (P) is a crucial nutrient for plant growth, but its availability to roots is limited in soil. Arbuscular mycorrhizal (AM) symbiosis is a promising strategy for improving plant P acquisition. However, P fertilizer reduces fungal colonization (P inhibition) and compromises mycorrhizal P uptake, warranting studies on the mechanistic basis of P inhibition. In this study, early morphological changes in P inhibition were identified in rice (Oryza sativa) using fungal cell wall staining and live-cell imaging of plant membranes that were associated with arbuscule life cycles. Arbuscule density decreased, and aberrant hyphal branching was observed in roots at 5 h after P treatment. Although new arbuscule development was severely inhibited, preformed arbuscules remained intact and longevity remained constant. P inhibition was accelerated in the rice pt11-1 mutant, which lacks P uptake from arbuscule branches, suggesting that mature arbuscules are stabilized by the symbiotic P transporter under high P condition. Moreover, P treatment led to increases in the number of vesicles, in which lipid droplets accumulated and then decreased within a few days. The development of new arbuscules resumed within by 2 d. Our data established that P strongly and temporarily inhibits new arbuscule development, but not intraradical accommodation of AM fungi.
© 2016 American Society of Plant Biologists. All Rights Reserved.