Preconditioning with recombinant high-mobility group box 1 induces ischemic tolerance in a rat model of focal cerebral ischemia-reperfusion

J Neurochem. 2016 May;137(4):576-88. doi: 10.1111/jnc.13611. Epub 2016 Apr 1.

Abstract

Preconditioning with ligands of toll-like receptors (TLRs) is a powerful neuroprotective approach whereby a low dose of stimulus confers significant protection against subsequent substantial brain damage by reprogramming the ischemia-activated TLRs signaling. Herein, we aim to explore whether preconditioning with recombinant high-mobility group box 1 (rHMGB1), one of the TLRs ligands, decreases cerebral ischemia-reperfusion injury (IRI). Rats were intracerebroventricularly pretreated with rHMGB1, 1 or 3 days before induction of middle cerebral artery occlusion. Results showed that preconditioning with rHMGB1 1 day, but not 3 days, prior to ischemia dramatically reduced neurological deficits, infarct size, brain swelling, cell apoptosis, and blood-brain barrier permeability. Interleukin-1R-associated kinase-M (IRAK-M), a critical negative regulator of TLRs signaling, was robustly increased in response to brain IRI and was further elevated by rHMGB1 pretreatment, indicating its role associated with the rHMGB1 preconditioning-mediated ischemic tolerance. In vitro and in vivo assays indicated that the induced IRAK-M expression was localized in microglia. In addition, TLR4 specific inhibitor TAK-242 abolished the neuroprotective effects and the induction of IRAK-M offered by rHMGB1 preconditioning. Collectively, our study demonstrates that rHMGB1 preconditioning is neuroprotective during cerebral IRI, which is associated with activated TLR4/IRAK-M signaling in microglia. We found that high-mobility group box 1 (HMGB1) pretreatment conditioned the brain against subsequent ischemia-reperfusion injury. We propose the following mechanism for HMGB1 preconditioning-mediated ischemic tolerance: through toll-like receptor TLR4, HMGB1 preconditioning magnifies the up-regulation of interleukin-1R-associated kinase-M (IRAK-M) induced by ischemia-reperfusion in microglia, resulting in the decreased phosphorylation of IRAK-1. These findings are helpful in understanding the endogenous mechanisms that counteract ischemic insults.

Keywords: HMGB1; IRAK-M; TLR4; microglia; neuroprotection; preconditioning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Ischemia / metabolism
  • Brain Ischemia / pathology
  • Brain Ischemia / therapy*
  • Cell Line
  • HMGB1 Protein / therapeutic use*
  • Ischemic Preconditioning / methods*
  • Male
  • Mice
  • Rats
  • Rats, Wistar
  • Recombinant Proteins / therapeutic use
  • Reperfusion Injury / metabolism
  • Reperfusion Injury / pathology
  • Reperfusion Injury / therapy*

Substances

  • HMGB1 Protein
  • Hbp1 protein, rat
  • Recombinant Proteins