Background: Aortic valve stenosis (AS) can cause angina despite unobstructed coronary arteries, which may be related to increased compression of the intramural microcirculation, especially at the subendocardium. We assessed coronary wave intensity and phasic flow velocity patterns to unravel changes in cardiac-coronary interaction because of transcatheter aortic valve implantation (TAVI).
Methods and results: Intracoronary pressure and flow velocity were measured at rest and maximal hyperemia in undiseased vessels in 15 patients with AS before and after TAVI and in 12 control patients. Coronary flow reserve, systolic and diastolic velocity time integrals, and the energies of forward (aorta-originating) and backward (microcirculatory-originating) coronary waves were determined. Coronary flow reserve was 2.8±0.2 (mean±SEM) in control and 1.8±0.1 in AS (P<0.005) and was not restored by TAVI. Compared with control, the resting backward expansion wave was 45% higher in AS. The peak of the systolic forward compression wave was delayed in AS, consistent with a delayed peak aortic pressure, which was partially restored after TAVI. The energy of forward waves doubled after TAVI, whereas the backward expansion wave increased by >30%. The increase in forward compression wave with TAVI was related to an increase in systolic velocity time integral. AS or TAVI did not alter diastolic velocity time integral.
Conclusions: Reduced coronary forward wave energy and systolic velocity time integral imply a compromised systolic flow velocity with AS that is restored after TAVI, suggesting an acute relief of excess compression in systole that likely benefits subendocardial perfusion. Vasodilation is observed to be a major determinant of backward waves.
Keywords: aortic valve stenosis; cardiac–coronary interaction; coronary flow; transcatheter aortic valve implantation; wave intensity.
© 2016 American Heart Association, Inc.