Background and purpose: Apelin-13, an endogenous ligand for the apelin (APJ) receptor, behaves as a potent modulator of metabolic and cardiovascular disorders. Here, we examined the effects of apelin-13 on myocardial injury in a mouse model combining ischaemia/reperfusion (I/R) and obesity and explored their underlying mechanisms.
Experimental approach: Adult male C57BL/6J mice were fed a normal diet (ND) or high-fat diet (HFD) for 6 months and then subjected to cardiac I/R. The effects of apelin-13 post-treatment on myocardial injury were evaluated in HFD-fed mice after 24 h I/R. Changes in protein abundance, phosphorylation, subcellular localization and mRNA expression were determined in cardiomyoblast cell line H9C2, primary cardiomyocytes and cardiac tissue from ND- and HFD-fed mice. Apoptosis was evaluated by TUNEL staining and caspase-3 activity. Mitochondrial ultrastructure was analysed by electron microscopy.
Key results: In HFD-fed mice subjected to cardiac I/R, i.v. administration of apelin-13 significantly reduced infarct size, myocardial apoptosis and mitochondrial damage compared with vehicle-treated animals. In H9C2 cells and primary cardiomyocytes, apelin-13 induced FoxO1 phosphorylation and nuclear exclusion. FoxO1 silencing by siRNA abolished the protective effects of apelin-13 against hypoxia-induced apoptosis and mitochondrial ROS generation. Finally, apelin deficiency in mice fed a HFD resulted in reduced myocardial FoxO1 expression and impaired FoxO1 distribution.
Conclusions and implications: These data reveal apelin as a novel regulator of FoxO1 in cardiac cells and provide evidence for the potential of apelin-13 in prevention of apoptosis and mitochondrial damage in conditions combining I/R injury and obesity.
© 2016 The British Pharmacological Society.