Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9142-51. doi: 10.1021/acsami.6b01183. Epub 2016 Mar 31.

Abstract

Nanostructured black anatase titania with oxygen vacancies (OVs) is efficiently obtained and employed as an anode in sodium-ion batteries (SIBs) for the first time. The incorporation of OVs into TiO2 is demonstrated to render considerably enhanced-rate performances, higher initial capacities, and an accelerated electrochemical activation process during cycling, derived from the boosted intrinsic electric conductivity and improved kinetics of Na uptake. Bestowed with the integrated merits of OVs and shortened Na ion diffusion length in the nanostructure, black titania delivers a reversible specific capacity of 207.6 mAh g(-1) at 0.2 C, retains 99.1% over 500 cycles at 1 C stably, and still maintains 91.2 mAh g(-1) even at the high rate of 20 C. Density functional theory (DFT) calculations suggest that the lower sodiation energy barrier of anatase with OVs enables a more favorable Na intercalation into black anatase. Thus, it is of great significance to introduce OVs into TiO2 to stimulate ultrafast and durable sodium-storage properties, which also offers a potential strategy to project more superior electrodes, utilizing internal defects.

Keywords: anode; black anatase; oxygen vacancies; rate performances; sodium-ion batteries.

Publication types

  • Research Support, Non-U.S. Gov't