This chapter introduces methods to synthesize experimental results from independent high-throughput genomic experiments, with a focus on adaptation of traditional methods from systematic review of clinical trials and epidemiological studies. First, it reviews methods for identifying, acquiring, and preparing individual patient data for meta-analysis. It then reviews methodology for synthesizing results across studies and assessing heterogeneity, first through outlining of methods and then through a step-by-step case study in identifying genes associated with survival in high-grade serous ovarian cancer.
Keywords: Biomarkers; Computational molecular biology; Gene expression profiling; Meta-analysis; Microarray analysis; Ovarian neoplasms.