Background: Activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL) presents aggressive clinical courses and poor prognosis. Targeting key pathways may raise the possibility of improving clinical outcomes.
Methods: The synergetic effects were assessed by CCK-8 assay and measured by isobologram analysis. The NVP-Bez235 and lenalidomide cytotoxicity were measured by flow cytometry, Western Blot and si-RNA transfection. The combined treatment inducing tumor regression in vivo was performed in nude mice of OCI-Ly10 xenograft mouse model.
Results: Low dose of two agents represented significant inhibition of proliferation with CI value < 1. NVP-Bez235 combined with lenalidomide remarkably increased apoptosis through intrinsic pathway by upregulating Bim, Bax and downregulating Bcl-xL. Akt, especially NF-κB, played an important role in the synergetic effects. Cotreatment also induced the cell cycle to be arrested in G0/G1 phase, and decreased S phase by increasing p21 expression, downregulating cyclinA and diminishing CDK2 phosphorylation in Su-DHL2 and OCI-Ly3 but not in OCI-Ly10. Mice treated with NVP-Bez235/lenalidomide represented obvious tumor growth regression and prolonged overall survival.
Conclusions: Our findings demonstrated the synergistic effect of low dose of NVP-Bez235 and lenalidomide in ABC-DLBCL, the underlying mechanism may be multifunctional, involving apoptosis, Akt and NF-κB inactivation and cell cycle arrest. Cotreatment was also effective in vivo. These data pave the way for potential treatment of ABC-DLBCL with combination of NVP-Bez235 and lenalidomide.
Keywords: Apoptosis; Cell cycle; Diffuse large B cell lymphoma; Lenalidomide; NF-κB; PI3K/mTOR inhibitor.