The transport of genetically engineered microorganism (GEM) in the soil is considered to be the important factor influencing the enhanced bioremediation of polluted soil. The transport of an atrazine-degrading GEM and its influencing factors were investigated in the saturated cultivation soil of Huabei Plain. The results showed that horizontal infiltration was the main mechanism of GEM transport in the saturated cultivation soil. The transport process could be simulated using the filtration model. Soil properties showed significant effects on pore water flow and GEM transport in saturated soil. When particle size, porosity and sand component of the soil increased, the hydraulic conductivity constant increased and filtration coefficient of GEM decreased in saturated soil, indicating the reduced retention of GEM in the soil. An increase in infiltration flow also increased hydraulic conductivity constant in saturated soil and consequently decreased filtration coefficient of GEM. When hydraulic conductivity constants ranged from 5.02 m · d⁻¹ to 6.70 m · d⁻¹ in the saturated soil, the filtration coefficients of GEM varied from 0.105 to 0.274. There was a significantly negative correlation between them.