It was underscored that the optimization of policies of preventive maintenance has become a subject of much research. This article proposes a new optimal policy of preventive maintenance for the roller shaft system. It is divided into two main sections. The first proposes a new design of the shaft where the effect of preventive maintenance is integrated, and the second is developing a new control technique adapted to the new design. In this regard, we are interested in the shaft of rollers of the rotary kilns of cement. We have noted the stresses imposed to the axis of the roller. These constraints that have stemmed from the contact between tire and its support rollers. Currently the ultrasonic inspection method of the solid shaft in this situation poses disadvantages, for example, the obligation to stop the rotary Kiln and the difficulty of detecting and sizing defects (fatigue cracks). We propose in this study another approach, we recommend opting for a hollow shaft instead of a solid shaft with a minimum diameter that allows the control system to enter hollow shaft to show for inspection purposes. This will allow preventive control, in operation by the non-destructive technique of ultrasound. The analysis shows the different results of comparison between the axis of full and hollow cylinders, having the same dimensions and the same material and ultimately the most interesting is the same operation.
Keywords: FEM; Fatigue; Non destructive testing; Preventive maintenance; Roller shaft; Rotary kiln.