Twist1 is well known to induce epithelial-mesenchymal transition (EMT) and promote tumor metastasis. MicroRNAs (miRNAs) are involved in the EMT process and are associated with metastasis in hepatocellular carcinoma (HCC). In the present study, microRNA-26b-5p (miR-26b-5p) expression was consistently and significantly downregulated in HepG2-Twist1 HCC cell lines compared with HepG2-vector cell lines using microarrays (the HepG2-Twist1 cell line can stably express Twist1). miR-26b- 5p downregulation was directly mediated by Twist1 through binding to the promoter region of miR-26b-5p in HepG2-Twist1 cells by ChIP-seq technology. Both gain- and loss-of-function studies showed that miR-26b-5p dramatically suppressed EMT and the invasion ability of HCC cells in vitro. Using mouse models, tumors derived from miR- 26b-5p-overexpressed HCC cells exhibited a significant reduction in tumorigenicity compared with the control group. Subsequent investigation revealed that miR-26b-5p directly inhibited SMAD family member 1 (SMAD1) expression. miR-26b-5p repressed BMP4/Smad1 signaling following SMAD1 inhibition. Overexpression of SMAD1 reversed the function of miR-26b-5p. In human HCC tissues and mouse xenograft tumors, miR-26b-5p levels were inversely correlated with SMAD1 expression as well as metastasis.
Conclusion: miR-26b-5p suppresses Twist1-induced EMT, invasion, and metastasis of HCC cells by targeting SMAD1 and BMP4/Smad1 signaling. This suggests a promising application for miR-26b-5p in anti-HCC therapy.
Keywords: SMAD1; early recurrence; epithelial-mesenchymal transition; hepatocellular carcinoma; microRNA.