Objective: Thrombin signaling promotes atherosclerosis by initiating inflammatory events indirectly through platelet activation and directly via protease-activated receptors. Therefore, endogenous thrombin inhibitors may be relevant modulators of atheroprogression and cardiovascular risk. In addition, endogenous thrombin inhibitors may affect the response to non-vitamin K-dependent oral anticoagulants. Here, the question was addressed whether the small leucine-rich proteoglycan biglycan acts as an endogenous thrombin inhibitor in atherosclerosis through activation of heparin cofactor II.
Approach and results: Biglycan concentrations were elevated in the plasma of patients with acute coronary syndrome and in male Apolipoprotein E-deficient (ApoE(-/-)) mice. Biglycan was detected in the glycocalyx of capillaries and the subendothelial matrix of arterioles of ApoE(-/-) mice and in atherosclerotic plaques. Thereby a vascular compartment is provided that may mediate the endothelial and subendothelial activation of heparin cofactor II through biglycan. ApoE and Bgn double-deficient (ApoE(-/-)/Bgn(-/0)) mice showed higher activity of circulating thrombin, increased platelet activation and platelet adhesion in vivo, supporting a role of biglycan in balancing thrombin activity. Furthermore, concentrations of circulating cytokines and aortic macrophage content were elevated in ApoE(-/-)/Bgn(-/0) mice, suggesting a proinflammatory phenotype. Elevated platelet activation and macrophage accumulation were reversed by treating ApoE(-/-)/Bgn(-/0) mice with the thrombin inhibitor argatroban. Ultimately, ApoE(-/-)/Bgn(-/0) mice developed aggravated atherosclerosis.
Conclusions: The present results indicate that biglycan plays a previously unappreciated protective role during the progression of atherosclerosis by inhibiting thrombin activity, platelet activation, and finally macrophage-mediated plaque inflammation.
Keywords: atherosclerosis; biglycan; blood platelets; inflammation; thrombin.
© 2016 American Heart Association, Inc.