MicroRNAs (miRNAs) play important roles in pulmonary artery hypertension (PAH). Recently, it has been reported that miR-199a-5p participates in the progression of chronic obstructive pulmonary disease, ventricular hypertrophy and heart failure. However, the roles of miR-199a-5p in PAH are still unclear. In the present study, miR-199a-5p was investigated in PAH rat models and in human pulmonary artery smooth muscle cells (HPASMCs) and endothelial cells (HPAECs). The expression of miR-199a-5p was significantly increased following PAH induction, and anti-miR-199a-5p could increase the nitric oxide (NO) level and decrease the PAH-induced upregulation of pulmonary artery pressure and right ventricular hypertrophy. Moreover, in HPASMCs and HPAECs, miR-199a-5p overexpression could inhibit the level of NO and promote the concentration of Ca(2+), but anti-miR-199a-5p showed opposite results. Further analysis demonstrated that miR-199a-5p attenuated the expression of Smad3. Importantly, Smad3 was confirmed to be the target gene of miR-199a-5p using dual-luciferase reporter assay. Mechanism analyses revealed that the downregulation of NO and the upregulation of Ca(2+) caused by miR-199a-5p were all reversed by Smad3 overexpression in HPASMCs and HPAECs. Moreover, in PAH model, Smad3, p-Smad3 and Smad4 were all downregulated in lung tissues, and SIS3 (Smad3 inhibitor) could reverse the effects of anti-miR-199a-5p in PAH rats. Our date suggest that miR-199a-5p may function as a regulator of PAH by targeting Smad3, indicating a novel therapeutic strategy for patients with PAH.
Keywords: Calcium concentration; Nitric oxide; Pulmonary artery hypertension; Smad3; miR-199a-5p.
Copyright © 2016 Elsevier Inc. All rights reserved.