Background and purpose: Microthrombi originating from disintegrated clots or formed in situ may account for the poor clinical improvement of acute ischemic stroke after recanalization therapy. We attempted to determine whether microbubble-mediated sonothrombolysis could dissolve platelet-rich and erythrocyte-rich microthrombi, thereby reducing their brain injury-causing potential.
Methods: Platelet- and erythrocyte-rich microthrombosis were induced by periadventitial application of 5% ferric chloride or thrombin to mesenteric microvessels in 75 Sprague-Dawley rats. Acute ischemic stroke was induced by intracarotid injection of platelet- or erythrocyte-rich microthrombi in another 50 rats. Rats were randomly divided into control (CON), ultrasound (US), ultrasound and microbubble (US+MB), recombinant tissue-type plasminogen activator (r-tPA), and US+MB+r-tPA groups. The post-treatment mesenteric microvessel recanalization rates, cerebral infarct volumes, and neurological scores were determined.
Results: The recanalization rates of platelet- and erythrocyte-rich microthrombi in mesenteric microvessels were higher (P<0.05), and the cerebral infarct volumes and neurological scores of rats with either microthrombi were lower in the US+MB group than in the CON group (P<0.01). The infarct volumes and neurological scores were greater in the r-tPA group than in the US+MB and US+MB+r-tPA groups after treatment of rats with platelet-rich microthrombi (P<0.05). In contrast, after treatment of rats with erythrocyte-rich microthrombi, the infarct volumes and neurological scores were similar in the r-tPA and US+MB groups, but smaller in the US+MB+r-tPA group (P<0.05).
Conclusions: Microbubble-mediated sonothrombolysis improved the outcomes of microthrombi-induced acute ischemic stroke. Thus, this method may serve as an attractive adjunct to recanalization therapy for acute ischemic stroke.
Keywords: microbubbles; stroke; thrombolytic therapy; thrombus; ultrasonics.
© 2016 American Heart Association, Inc.